A new 4-variable formula to differentiate normal variant ST segment elevation in V2-V4 (early repolarization) from subtle left anterior descending coronary occlusion - adding QRS amplitude of V2 improves the model


Department of Medicine, Cardiology Division, Aurora St. Luke's Medical Center


INTRODUCTION: Precordial normal variant ST elevation (NV-STE), previously often called "early repolarization," may be difficult to differentiate from subtle ischemic STE due to left anterior descending (LAD) occlusion. We previously derived and validated a logistic regression formula that was far superior to STE alone for differentiating the two entities on the ECG. The tool uses R-wave amplitude in lead V4 (RAV4), ST elevation at 60 ms after the J-point in lead V3 (STE60V3) and the computerized Bazett-corrected QT interval (QTc-B). The 3-variable formula is: 1.196 x STE60V3 + 0.059 × QTc-B - 0.326 × RAV4 with a value ≥23.4 likely to be acute myocardial infarction (AMI).

HYPOTHESIS: Adding QRS voltage in V2 (QRSV2) would improve the accuracy of the formula.

METHODS: 355 consecutive cases of proven LAD occlusion were reviewed, and those that were obvious ST elevation myocardial infarction were excluded. Exclusion was based on one straight or convex ST segment in V2-V6, 1 millimeter of summed inferior ST depression, any anterior ST depression, Q-waves, "terminal QRS distortion," or any ST elevation >5 mm. The NV-STE group comprised emergency department patients with chest pain who ruled out for AMI by serial troponins, had a cardiologist ECG read of "NV-STE," and had at least 1 mm of STE in V2 and V3. R-wave amplitude in lead V4 (RAV4), ST elevation at 60 ms after the J-point in lead V3 (STE60V3) and the computerized Bazett-corrected QT interval (QTc-B) had previously been measured in all ECGs; physicians blinded to outcome then measured QRSV2 in all ECGs. A 4-variable formula was derived to more accurately classify LAD occlusion vs. NV-STE and optimize area under the curve (AUC) and compared with the previous 3-variable formula.

RESULTS: There were 143 subtle LAD occlusions and 171 NV-STE. A low QRSV2 added diagnostic utility. The derived 4-variable formula is: 0.052*QTc-B - 0.151*QRSV2 - 0.268*RV4 + 1.062*STE60V3. The 3-variable formula had an AUC of 0.9538 vs. 0.9686 for the 4-variable formula (p = 0.0092). At the same specificity as the 3-variable formula [90.6%, at which cutpoint (≥23.4), 123 of 143 MI were correctly classified for 86% sensitivity], the sensitivity of the new formula at cutpoint ≥17.75 is 90.2%, with 129/143 correctly classified MI, identifying an additional 6 cases. The cutpoint with the highest accuracy (92.0%) was at a cutoff value ≥18.2, with 88.8% sensitivity, 94.7% specificity, and a positive and negative likelihood ratio of 16.9 (95% CI: 8.9-32) and 0.12 (95% CI: 0.07-0.19). At this cutpoint, it correctly classified an additional 11 cases (289 of 315, vs. 278 of 315): 127/143 for MI (an additional 4 cases) and 162/171 for NV-STE (an additional 7 cases).

CONCLUSION: On the ECG, a 4-variable formula was derived which adds QRSV2; it differentiates subtle LAD occlusion from NV-STE better than the 3-variable formula. At a value ≥18.2, the formula (0.052*QTc-B - 0.151*QRSV2 - 0.268*RV4 + 1.062*STE60V3) was very accurate, sensitive, and specific, with excellent positive and negative likelihood ratios. This formula needs to be validated.

Document Type


PubMed ID


Link to Full Text