Cardiac, renal and liver function in neonates with Hypoxic Ischemic Encephalopathy treated with Therapeutic Hypothermia

Gospodin Stefanov, MD, PhD**, Timothy Colombo*, Lorene Schweig, BSN, RN§, Preetha Prazad MD**, Ramona Donovan MS, RD§

Department of Pediatrics, Divisions of **Neonatology & Advocate Center for Pediatric Research¹, Advocate Children’s Hospital – Park Ridge, IL, USA
¹Rosalind Franklin University of Medicine & Science, North Chicago, IL, USA

Introduction

• Hypoxic-ischemic encephalopathy (HIE) is a condition in which perinatal asphyxia (PA)—prolonged hypoxia before, during, or after birth—leads to neural injury, causing extensive central nervous system (CNS) damage and possibly death.
• Up to 15-20% of infants diagnosed with HIE die in the postnatal period, and an additional 25% develop severe neurological deficits, including motor, auditory, or visual dysfunction, epilepsy, and cerebral palsy. Hypoxic secondary to perinatal asphyxia can lead to multiforgan dysfunction in addition to CNS damage.
• Therapeutic hypothermia (TH) has become a standard of care for asphyxiated neonates. It has proven to be beneficial in minimizing the CNS damage that causes HIE. Cooling of an infant’s core temperature to 33-34°C for 72 hours improves neurological outcomes at 18 months of age in asphyxiated neonates.
• Cardiac dysfunction has been noted in 62% of neonates with HIE.
• Kidney and liver injury have also been shown to be a consequence of PA and may present in infants with HIE. The neonate’s inherent systemic response to hypoxia than CNS damage and possibly death.

Objective

• To evaluate cardiac, renal and liver function in neonates with HIE treated with TH and to determine whether various biochemical/functional parameters of cardiac, renal, and hepatic function are significant predictors of mortality.

Methods

Study Population: 47 neonates diagnosed with HIE and treated with TH in a level IV NICU, divided into groups based on:

• Gestational age (GA): Late Preterm (n=8) and Term (n=39).
• Size at Birth: Small for gestational age (SGA; n=12), appropriate-for-gestational age (AGA; n=30) and Large-for-gestational age (LGA; n=5).
• Outcome: Alive (n=40) and Deceased (n=7).

Cardiac function parameters: Ejection Fraction (EF), Shortening Fraction (SFx), and end-diastolic left ventricular internal diameter (LVIDd) and blood pressure (BP) were obtained from the echocardiograms. Blood pressure was also retrieved from EMR. EF was calculated via the Teichholz formula. A comparison of cooling methods used in therapeutic hypothermia for perinatal asphyxia. Pediatrics. 2010; 126(1); e124-130.

Biochemical Parameters: The following parameters were extracted from EMR at 24, 48, 72 and 96 hours (n=44) after birth:

• Troponin I, CK-MB, AST, ALT, and phosphorus (P), lactate (LA), creatinine (Cr), and urine output (UO).

Glucomeral filtration rate (GFR) was calculated using the Brion et al’s formula for estimating neonatal GFR.

• Statistical analysis: One-way ANOVA and Pearson correlation analyses were used to compare continuous variables between the independent groups. Fisher exact test was used for categorical variables.

Results

Cardiac Function Parameters

• There was no significant difference in cardiac function parameters (EF, SFx, or LVIDd) between the alive and deceased groups (p>0.05). See Table 1.

Cardiac Function Parameters (cont.)

• No significant correlation was found between echocardiogram parameters (EF, LVIDd, or SFx) and any measured biomarker of cardiac (Troponin I and CK-MB), renal (BUN, Cr, BUN/Cr, GFR), or hepatic (ALT, AST, Alk Phos, LA) injury (p>0.05).

Creatinine

• Mean serum Creatinine was significantly higher in the deceased group than the alive group at 24, 48, 72, 96 hours after birth (p<0.005). See Figure 2.

Table 1. Echocardiogram parameters associated with HIE infant Survival and Mortality (Mean ± SD).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alive Deceased Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function Fraction (%)</td>
<td>72.8 ± 8.3 69.8 ± 6.0 p = 0.40</td>
</tr>
<tr>
<td>LVIDd (cm)</td>
<td>1.7 ± 0.2 1.8 ± 0.2 p = 0.19</td>
</tr>
<tr>
<td>Shortening Fraction (%)</td>
<td>38.8 ± 6.8 36.6 ± 4.2 p = 0.40</td>
</tr>
</tbody>
</table>

Figure 2. Mean serum creatinine levels at 24, 48, 72, and 96h after birth. See Figure 1.

Mean serum creatinine levels at 24, 48, 72, and 96h after birth. * Significant at p<0.005

Figure 1. Mean serum creatinine levels at 24, 48, 72, and 96h after birth.

Glucomeral Filtration Rate (GFR)

vi. Mean GFR was significantly lower in the deceased group than the alive group at 24, 48, 72, 96 hours after birth (p<0.05). See Figure 2.

Statistical analysis: One-way ANOVA and Pearson correlation analyses were used to compare continuous variables between the independent groups. Fisher exact test was used for categorical variables.

Liver Function Parameters

• Mean serum ALT, AST, and Lactic Acid were significantly higher in the deceased group than the alive group at 24 hours after birth (p<0.05). See Table 2.

Table 2. Liver function parameters associated with HIE Infant Survival and Mortality (Mean ± SD).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alive Deceased Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (U/L)</td>
<td>87.0 ± 58.6 158.5 ± 216.9 p = 0.000001</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>207.5 ± 296.9 1214.0 ± 847.7 p = 0.000001</td>
</tr>
<tr>
<td>Alk Phos (IU/L)</td>
<td>126.5 ± 130.0 1605.2 ± 593.2 p = 0.000001</td>
</tr>
<tr>
<td>Lactic Acid (mmol/L)</td>
<td>87.0 ± 58.6 158.5 ± 216.9 p = 0.000001</td>
</tr>
</tbody>
</table>

Figure 4. Mean serum BUN at 24, 48, 72, and 96h after birth.

Urine Output

• Mean Urine Output was significantly lower in the deceased group than the alive group at 48, 72, and 96 hours after birth (p<0.05) but was not significantly lower at 24h. See Figure 3.

Figure 3. Mean urine output at 24, 48, 72, and 96h after birth.

Discussion

• Cardiac function parameters from echocardiograms (EF, SFx, LVIDd) did not significantly correlate with changes in biomarkers for renal and hepatic function.
• As a result, decreases in renal and hepatic function in neonates with HIE may be influenced more by the neonate’s inherent systemic response to hypoxia than cardiac dysfunction alone.

Conclusions

• Cardiac, renal, and liver function parameters did not significantly differ based on gestational age or by weight for gestational age.
• Markers of renal and hepatic function may be predictive of survival in neonates treated with therapeutic hypothermia.

Limitations

• There were disparities in the number of subjects in each group; for example, the Alive group had 40 subjects while the Deceased group had just 7.
• Approval will be requested to expand the study to include additional neonates treated for HIE up to 2020. This would improve the power of the study.

References