Utility of the W´BAL model in training program design for masters cyclists

Affiliations

Department of Sports Medicine, Advocate Lutheran General Hospital

Abstract

The present study aims to determine the utility of integrating balance model (W´BAL-INT) in designing interval training programs as assessed by improvements in power output, critical power (CP), and W prime (W´) defined as the finite work capacity above CP. Fourteen male cyclists (age = 42 ± 7 yr, body mass = 69.6 ± 6.5 kg, height = 175 ± 5 cm, CP = 302 ± 32 W, relative CP = 4.35 ± 0.66 W·kg-1) were randomized into two training groups: Short-Medium-Long intervals (SML-INT; n = 7) or Long intervals (L-INT, n = 7) [training sessions separated by 72 h], along with 3-4 sessions of moderate intensity training per week, for 4 weeks. All sessions were designed to result in the complete depletion of the W´ as gauged by the W´BAL-INT. CP and W´ were assessed using the specified efforts (i.e., 12, 7 and 3 min) and calculated with the 2-parameter CP linear model. Training loads between the groups were compared using different metrics. CP improved in both the SML-INT and L-INT groups by 5 ± 4% and 6 ± 5% (p < 0.001) respectively, without significant changes in W´. Mean maximal power over 3, 7 and 12 min increased significantly in the SML-INT group by 5%, 4% and 9%, (p < 0.05) without significant changes in the L-INT group. There were no differences between groups in training zone distribution or training load using BikeScore and relative intensity, but there was significantly (p < 0.05) higher TRIMPS for the Long-INT group. Therefore, W´BAL model may prove to be a useful tool for coaches to construct SML-INT training programs.

Type

Article

PubMed ID

36310098


 

Share

COinS