"Simvastatin reduces TGF-β1-induced SMAD2/3-dependent human ventricular" by Farhan Rizvi, Ramail Siddiqui et al.
 

Simvastatin reduces TGF-β1-induced SMAD2/3-dependent human ventricular fibroblasts differentiation: Role of protein phosphatase activation

Affiliations

Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute

Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers

Abstract

Background

Excessive cardiac fibrosis due to maladaptive remodeling leads to progression of cardiac dysfunction and is modulated by TGF-β1-activated intracellular phospho-SMAD signaling effectors and transcription regulators. SMAD2/3 phosphorylation, regulated by protein-phosphatases, has been studied in different cell types, but its role in human ventricular fibroblasts (hVFs) is not defined as a target to reduce cytokine-mediated excessive fibroticresponse and adverse cardiac remodeling. Statins are a class of drugs reported to reduce cardiac fibrosis, although underlying mechanisms are not completely understood. We aimed to assess whether simvastatin-mediated reduction in TGF-β1-augmented profibrotic response involves reduction in phospho-SMAD2/3 owing to activation of protein-phosphatase in hVFs.

Methods and results

Cultures of hVFs were used. Effect of simvastatin on TGF-β1-treated hVF proliferation, cytotoxicity, myofibroblast differentiation/activation, profibrotic gene expression and protein-phosphatase activity was assessed. Simvastatin (1 μM) reduced effect of TGF-β1 (5 ng/mL) on hVF proliferation, myofibroblast differentiation (reduced α-smooth muscle actin [α-SMA-expression]) and activation (decreased procollagen-peptide release). Simvastatin also reduced TGF-β1-stimulated time-dependent increases in SMAD2/3 phosphorylation and nuclear translocation, mediated through catalytic activation of protein-phosphatases PPM1A and PP2A, which physically interact with SMAD2/3, thereby promoting their dephosphorylation. Effect of simvastatin on TGF-β1-induced fibroblast activation was annulled by okadaic acid, an inhibitor of protein-phosphatase.

Conclusions

This proof-of-concept study using an in vitro experimental cell culture model identifies the protective role of simvastatin against TGF-β1-induced hVF transformation into activated myofibroblasts through activation of protein phosphatase, a novel target that can be therapeutically modulated to curb excessive cardiac fibrosis associated with maladaptive cardiac remodeling.

Document Type

Article

PubMed ID

30220377

Link to Full Text

 

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 17
  • Usage
    • Abstract Views: 7
  • Captures
    • Readers: 29
see details

Share

COinS