Affiliations

Aurora St. Lukes Medical Center

Aurora Sinai Medical Center

Graduate Medical Education

Quality

Family Medicine

Ob Gyn

Internal Medicine

Presentation Notes

1 of 7 abstracts selected for platform presentation at AIAMC Annual Meeting

Abstract

Introduction/Background

To deliver person-centric, best-in class health care we must transition to value-based care. As part of managing this transition, we must identify at risk populations – those with disparities in clinical measures - by leveraging our existing data sets to provide actionable data to inform how we manage these populations. Currently our health care system provides clinical quality metrics to support providers’ ability to engage in continuous improvement. This data is complimented by provider’s knowledge of the literature, which consistently identifies certain populations, often using the REAL-G categories, as at risk. For example, hypertension has well established risk factors including age, gender, and race: HTN increases through early middle age; women are more likely to develop HTN > 65; HTN is more common among blacks. However, our current clinical quality data does not normally provide detailed clinical/service level population specific metrics (e.g., REAL-G specific data) limiting providers’ ability to understand the clinical quality disparities in their patient populations.

Hypothesis/Aim Statement

To identify actionable disparity gaps for quality improvement through detailed analysis of selected clinic level quality metrics by REAL-G Categories (Race, Ethnicity, Age, Language, Gender).

Methods

Three residency programs participating in the Alliance of Independent Academic Medical Center’s National Initiative V (AIAMC-NIV) identified a current system-wide quality metric that was not at/above system goal: Family Medicine - colorectal cancer (CRC) screening; Internal Medicine – diabetes; and Ob/Gyn - postpartum readmission for hypertension. Through a partnership between Graduate Medical Education (GME) and Service Quality leaders, a retrospective analysis of selected quality metrics was undertaken to determine if there were disparities using REAL-G categories over a 12-month period (12.2014-11.2015). Each residency team then reviewed the data to identify the largest disparities by REAL-G category for quality improvement.

Results

The largest disparities in our clinics/service areas were sometimes consistent with the literature (e.g., 65% of African American DM Patients > HbA1cs compared to 70% of White-Hispanic and 71% White-Non Hispanic) but not always! For example the largest CRC screening disparity was not race, ethnicity or gender (

Conclusions

Diving into our clinical quality metrics using REAL-G categories, provided the actionable data needed in each of our three residency programs to plan disparity targeted improvement cycles.

Document Type

Oral/Podium Presentation


 

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.