•  
  •  
 

Publication Date

4-2-2024

Keywords

health care teams; patient engagement; big data; machine learning

Abstract

Purpose

Team-based care has been linked to key outcomes associated with the Quadruple Aim and a key driver of high-value patient-centered care. Use of the electronic health record (EHR) and machine learning have significant potential to overcome previous barriers to studying the impact of teams, including delays in accessing data to improve teamwork and optimize patient outcomes.

Methods

This study utilized a large EHR dataset (n = 316,542) from an urban health system to explore the relationship between team composition and patient activation, a key driver of patient engagement. Teams were operationalized using consensus definitions of teamwork from the literature. Patient activation was measured using the Patient Activation Measure (PAM). Results from multilevel regression analyses were compared to machine learning analyses using multinomial logistic regression to calculate propensity scores for the effect of team composition on PAM scores. Under the machine learning approach, a causal inference model with generalized overlap weighting was used to calculate the average treatment effect of teamwork.

Results

Seventeen different team types were observed in the data from the analyzed sample (n = 12,448). Team sizes ranged from 2 to 5 members. After controlling for confounding variables in both analyses, more diverse, multidisciplinary teams (team size of 4 or more) were observed to have improved patient activation scores.

Conclusions

This is the first study to explore the relationship between team composition and patient activation using the EHR and big data analytics. Implications for further research using EHR data and machine learning to study teams and other patient-centered care are promising and could be used to advance team science. (J Patient Cent Res Rev. 2024;11:18-28.)

Share

COinS
 

Submitted

November 3rd, 2022

Accepted

July 25th, 2023

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.